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Abstract— Cloth manipulation is a difficult problem mainly
because of the non-rigid nature of cloth, which makes a
good representation of deformation essential. We present a
new representation for the deformation-state of clothes. First,
we propose the dGLI disk representation, based on topological
indices computed for segments on the edges of the cloth mesh
border that are arranged on a circular grid. The heat-map of
the dGLI disk uncovers patterns that correspond to features of
the cloth state that are consistent for different shapes, sizes of
positions of the cloth, like the corners and the fold locations. We
then abstract these important features from the dGLI disk into
a circle, calling it the Cloth StatE representation (CloSE). This
representation is compact, continuous, and general for different
shapes. Finally, we show the strengths of this representation
in two relevant applications: semantic labeling and high-
and low-level planning. The code, the dataset and the video
can be accessed from : https://jaykamat99.github.io/
close-representation/

I. INTRODUCTION

Cloth manipulation is a challenging problem in robotics
mainly because of the cloth infinite-dimensional configura-
tion space, i.e. the space of possible cloth positions (or states)
in space. Unlike rigid or even articulated objects, where one
just needs the object pose and joint configurations in case of
articulations, clothes can deform in multiple ways making
it extremely difficult to have a simplified representation. In
addition, the various shapes, sizes, and mechanical properties
of clothes add to the difficulty. For this reason, end-to-
end learning-based methods struggle to learn to manipulate
clothes even in simulation, because by sampling examples it
is nearly impossible to explore all the configuration space. In
addition, perception is misleading because these objects have
a lot of self-occlusions and intricate shapes even in simulated
images. Several reviews in literature point to the need of a
simplified good representations that could pave the way for
having more efficient learning methods [1–3].

In recent years, many datasets with both real and sim-
ulated clothes have emerged, as summarized in [4]. Real
images lack ground truth information on the configuration
of cloth, and many reconstruction works [5, 6] rely on
realistic simulated images where the ground truth is the full
mesh. But even then, there is no real understanding of the
configuration of cloth other than comparing to predefined

The research has been partially supported by project PID2023-
152259OB-I00 (CHLOE-MAP), MCIU/ AEI /10.13039/501100011033,
project ROBassist (CSIC code 202450E060), and by ERDF, UE and project
SoftEnable (HORIZON-CL4-2021-DIGITAL-EMERGING-01-101070600)

All authors are with the Institut de Robòtica i Informàtica Industrial,
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Fig. 1: Example of CloSE derivation: From the border, we
compute the dGLI disk where each petal corresponds to a
corner. The difference between dGLI disks for the start and
end frames allows to extract the fold information, so as to
obtain the final CloSE descriptor that is shown graphically
and numerically at the bottom of the figure.

states or recognizing which pixels are sleeves or collars. In
other words, there is no definitive solution to reason on the
configuration space of cloth. In addition, partial solutions
are costly and inefficient because robots could work with
much less information than the full mesh. For instance,
previous works have shown how recognizing salient features,
corners or borders is enough for effective manipulation [7,
8]. Existing solutions to navigate the configuration space of
cloth are based on RGB-D zenital images of folded states [9,
10], that effectively learn observed transitions between the
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silhouette of observed states.
Authors in [11] mathematically prove how for developable

surfaces, as cloth is if assumed to be inextensible, the
border pose defines the configuration of the entire cloth. This
inspired works such as [12] where topological indices were
measured on the border of the cloth to characterize its state.
In particular, they applied a derivative of the Gauss Linking
Integral (GLI), an index that measures the linking number of
curves, to the border of cloth to define a representation that
allowed to cluster different cloth states just using a distance.
Our paper takes inspiration from this work, but goes beyond
by representing the GLI derivative matrix in a novel way that
allows to define a very compact representation of the folding
state of cloth, the CloSE representation, that is independent
of the shape of the silhouette of the unfolded flat state,
continuous and fully analytical, and allows to reconstruct
cloth state from it.

Our CloSE representation encodes:
• The shape of the cloth, i.e., the location of the corners

of the silhouette of the flat unfolded state of the cloth
• The location of the folds and their orientations (which

side folds up)
We propose a method departing from the work of [12],

taking all edges along the border and calculating the dGLI.
The first important novelty is that we arrange these values in
a circular grid instead of a matrix, and we call it the dGLI
disk. We then use simple clustering and curve fitting algo-
rithms to get the coordinates for our proposed representation.
Fig. 1 shows the starting and final cloth borders of a fold-
ing action, their corresponding dGLI disks, the subtraction
operation that allows to define the fold coordinates, and the
CloSE representation obtained after our curve fitting. It is
worth noting that the dGLI disk encodes other cloth-state
characteristics in addition to first folds, like multiple folds
or wrinkles, which could be added to the CloSE descriptor
and will be studied in future works.

The contributions of this paper include
1) A new dGLI representation arranged in a disk instead

of a matrix, which unravels a hidden structure.
2) A novel very compact representation, CloSE, that

generalizes to any shape and pose of the cloth, as well
as the code to derive it given the cloth border.

3) Two applications of the CloSE representation: defining
an automatic semantic description of the cloth state and
planning manipulation sequences.

II. RELATED WORK

The configuration space of cloth is the space of possible
cloth states in the Euclidean space. Different representations
have been used in literature for robotic manipulation applica-
tions. Ranging from the full mesh of a simulated cloth [13] to
simplified geometric representations of the silhouettes [14–
16], none of these representations permit reasoning in this
space in a general way, as they are highly dependent on the
cloth shape. Later learning approaches relied on directly us-
ing the RGB or RGB-D as representation of the state of cloth

[17–19], usually limited to zenital views but still allowing to
encode folding states. One example is [9], where a lower
dimensional latent space of different observed states was
encoded as a road-map to plan actions. Since these works
map directly from the RGB image space to the latent space
without any knowledge of the cloth (implicit or explicit),
the latent space representation is not continuous, that is, the
intermediate steps cannot be visualized. In addition, these
data-based methods require a lot of training data for each
cloth shape. Our proposed representation assumes a given
border curve, but from that, it is general for any shape.

The idea of using the Gauss Linking Integral (GLI) for
robotics applications is not new. The GLI has been applied to
representative curves of the workspace to guide path planning
through holes [20, 21], for guiding caging grasps in [22–24],
and for planning humanoid robot motions using the GLI to
guide reinforcement learning [25]. The idea of applying the
GLI to the curve that represents the border of the cloth was
used in [12]. For planar curves the GLI is degenerated and
clothes on a table are mostly planar, therefore, [12] proposed
to apply a directional derivative of the GLI, leading to the
dGLI coordinates, which enable distance reasoning in the
C-space of cloth. This representation was used in [26] to
learn semantic tags of a dataset of folding states of a squared
piece of cloth. The dGLI coordinates rely on choosing a few
segments in the border to calculate the dGLI, and this makes
them sensitive to changes in the chosen segments and may
not be indicative of how the cloth behaves as a whole. Our
work mitigates this by choosing all edge segments for the
dGLI calculation instead of a few. This choice does increase
the dimension of the dGLI coordinates, but they are only used
to derive the CloSE representation, that is of much lower
dimension.

Our proposed method requires to know the curve of the
border of the silhouette, which is a limitation. For simulated
clothes this can be obtained because we have the full mesh.
For perception of real cloth, there are several works that
already are able to identify either the mesh of the cloth [27]
or directly identify the border [8, 28], and therefore, they
open the door to calculate our representation from real cloth
images.

To the best of our knowledge, this is the first time a
continuous representation of the folding state of cloth is
proposed that is independent of the cloth shape, continuous
and enables the reconstruction of the state of cloth given the
initial unfolded state. This representation is general, but in
this work we will only present results for one fold, although
in future work we are already working on the generalization
of the representation to multiple folds.

III. BACKGROUND - dGLI

The Gauss Linking Integral (GLI) Eq.1 measures the
linking number between two closed curves.

G(γ1, γ2) =
1

4π

∫ ∫
(γ2 − γ1) · [γ′

2 × γ′
1]

||γ2 − γ1||3
(1)



(a) Variation of dGLI with an-
gle between segments

(b) Variation of dGLI with dis-
tance between segments

Fig. 2: Behavior of dGLI in case of planar segments

The work in [29] shows that the Linking Integral computed
between two open curves can also be used for many real
world applications because it measures how much the two
curves revolve around each other. They introduced a discrete
version of the formula above based on the computation of
the GLI between the segments that form the curves. The GLI
between two line segments can be calculated as

G(γAB , γCD) = arcsin(n⃗a · n⃗b) + arcsin(n⃗b · n⃗c)

+ arcsin(n⃗c · n⃗d) + arcsin(n⃗d · n⃗a) (2)

n⃗a =
A⃗C × A⃗D

||A⃗C × A⃗D||
, n⃗b =

B⃗C × B⃗D

||B⃗C × B⃗D||
,

n⃗c =
C⃗D × C⃗A

||C⃗D × C⃗A||
, n⃗d =

D⃗A× D⃗B

||D⃗A× D⃗B||
Since the measure GLI vanishes when the segments are

coplanar the work in [12] introduced the directional deriva-
tive of the GLI along the zenithal axis, called the dGLI.

dGLI(γAB , γCD) =
G(γAB+ϵ, γCD+ϵ)− G(γAB , γCD)

ϵ
(3)

where ϵ is a small perturbation in the zenithal direction of
the coth made only to points B and D.1 In [12] the dGLI
coordinates were defined as all the crossed computations of
the dGLI for a few of the segments of the border of the cloth.

The dGLI coordinates can be also arranged as a ma-
trix, whose heat-map show interesting different patterns
depending on the cloth state. To understand them, we study
how the value of the dGLI for two segments behaves. We
have numerically evaluated the dGLI for planar segments
for continuously varying angle with constant distance. The
resulting graphs are shown in Fig. 2a. Notice that dGLI is 0
when the lines are co-linear, positive on one side and negative
on the other. The value of dGLI also decreases as the distance
between the 2 segments increases, as shown in Fig. 2b.

IV. REPRESENTATION

We propose two novel cloth representations. The first is
the dGLI disk, which is inspired by [12], and the second is

1For calculating dGLI, in this paper we use dGLI = G(x+2ϵ)−G(x+ϵ)
ϵ

This does not change any of our analysis. We do this to handle consecutive
edge segments.

a) b) c)

Fig. 3: a) A square napkin mesh. b) The corresponding origi-
nal dGLI matrix as in [12] and c) Our proposed arrangement
in the dGLI disk

the compact and continuous representation that we get from
the dGLI disk, the CloSE representation.

A. The dGLI disk

The dGLI disk is a novel circular arrangement for the
dGLI between edges on the border of the cloth. To un-
derstand this, we will take the example of a square napkin
folded diagonally as shown in Fig. 3. Unlike in [12], where
the authors used only a few edges in the dGLI matrix
representation, we use all the edges on the border of the
mesh. This is done to also capture more information about
the cloth. Calculating the dGLI’s between all edges and
placing them in the semi-matrix form as in [12] gives us a
grid as shown in Fig. 3-b, where the heatmap of the matrix
is shown, with white colors representing zero values, and
orange colors indicating positives and blues negatives. In
this form we can already see interesting patterns but they
are difficult to interpret. Noticing that information about the
corners is present in some sense on the diagonal and the top-
right corner, we propose a new arrangement of this semi-
matrix on a circular grid such that the grid cells on the
diagonal and the corner are now on the border of this disk
and all other cells are arranged inside.

To achieve this, we propose a new mapping as shown in
Fig. 4b. Here, the dGLI between the neighboring edges is
mapped onto the outermost (first) layer. The dGLI between
the second neighbor edges is mapped onto the second layer.
As for the location of the grid cells, we first symmetrically
mark E points on the border of our disk, where E is the
number of edges on the border of the mesh. We propose
to place dGLI(i, j) at a position somewhat close to the
midpoint of an imaginary line joining points i and j marked
on the disk border. This is the point where circles of equal
radii drawn from i and j would just touch. We notice from
Fig. 4a that this form a masonry brick structure as shown in
Fig. 4b. Notice that there are ⌊E/2⌋ layers and every layer
has exactly E elements. For the last layer, if E is even, we



(a) The intersecting circles
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(b) The dGLI mapping

Layer-wise arrangement of grid cells.
{dGLI(i, j) | mod(i− j) = 1} layer 1
{dGLI(i, j) | mod(i− j) = 2} layer 2
{dGLI(i, j) | mod(i− j) = 3} layer 3
{dGLI(i, j) | mod(i− j) = 4} layer 4

...
...

Fig. 4: The proposed dGLI disk mapping of the values of
dGLI(i, j)

have only E/2 unique elements, in which case we map the
the two opposite cells in the last layer to the same value (see
Fig. 4b).

This new arrangement allows for much easier interpre-
tation as clear geometric shapes appear, as in the example
shown in Fig. 3-c . In the dGLI disk we see a bright flower
pattern in the unfolded configuration indicating 4 corners.
The representation for the folded cloth adds an orange line
between the two folded corners passing through the center,
and the petals corresponding to the folded corners change
colors. These patterns are consistent across all shapes.

The pattern of the corners holds true by construction
because dGLI values are higher when the edges are near
and at an angle, as shown in the graphics in Fig. 2, and
appear as positive or negative depending on their relative
orientation, and when folded, they change sign. Also, when
the cloth folds, edges on the opposite sides of the fold come
closer resulting in the fold curve. All fold curves on our
dGLI disk are striaight for a half-fold and curves for other
folds, and they always pass through the center. Note that
the features depending on the shape of the border, like the
corners, appear in the disk with the same values, changing
their sign, for all the folding states. That is, the petals of the
corners are constant through all the states of the cloth. More
examples of the dGLI disk can be seen in the website and
the video.

The dGLI disk shows many other features that depend on
the cloth state, but in this work we have focused on single
folds. In the next section we will see how by applying simple
methods to the dGLI disk image we can identify the features
to form a very compact representation that we called CloSE.

B. The Cloth StatE (CloSE) representation

The CloSE representation is a compact, continuous repre-
sentation for cloth folding that keeps track of the corner and

Fig. 5: Column a) shows the border of the cloth mesh, b) the
dGLI disk difference, c) the clustered selected points from
the dGLI disk difference, d) shows the resulting fitted curve
and the computed fold coordinates, printed over the dGLI
disk difference, and e) shows the reconstructed mesh from
the initial cloth border using the CloSE representation.

the edges.
We define a list of vectors, where the first vector stores

the corner locations in radians, i.e., it’s location on the dGLI
disk. Similarly we store the fold locations as subsequent
vectors where the two end points of the fold (in radians)
denote the location of the fold. The order of these points also
denotes the orientation of the fold. That is, a fold (f1, f2)
will imply that the corners on the route from f1 to f2 in the
anticlockwise sense will be folded. (see Fig. 1). This notation
ensures that all values of (f1, f2) are valid folds, hence, we
can continuously linearly interpolate from one folded state
to another. Some examples are shown in the accompanying
video.

1) Computation of the corner coordinates v1, . . . , vn: To
get the corners we simply iterate through the first layer in
the dGLI disk and note the location of the points that are
above a certain threshold. Since the first layer only contains
dGLI between immediate neighbors, one corner will only
give one bright cell. This algorithm though naive did prove
to be robust to noise. Coordinates are one-dimensional as
they are represented only by the angle in radiants inside the
disk.

2) Computation of the fold coordinates (f1, f2): This
problem is a little bit more involved as we need to detect
if there is a curve through the center and fit a curve through
it. The points where this fitted curve intersects the border of
the disk determines the location of the folds.

In order to observe the folding pattern more clearly, we
take the difference between the initial and final dGLI disks
as

dGLI Diskdiff =
∣∣|dGLI Diskend| − |dGLI Diskstart|

∣∣. (4)

This isolates the changes occurred on the cloth due to the
folds, because the petals patterns depending on the corners
are constant through out all the manipulation, only changing
sign. Several examples can be seen in Fig. 5-b.



(a) The MATLAB dataset

(b) The VR dataset

Fig. 6: Error of the comparison between the reconstructed
borders of folded clothes from the CloSE representations and
real end-frames of the folded clothes

We use this dGLI Diskdiff to determine if the cloth has
been folded and also to locate the fold on the cloth. To this
end, we first get the (polar) coordinates of the cells above a
certain threshold and cluster them using the DBSCAN [30].
The clustering algorithm uses a custom metric for circular
distances defined as

d(x1, x2) =
√
(θ1 − θ2)2 + (r1 − r2)2, (5)

and a minimum sample size. This ensures that points near the
center that may be close in the Euclidean sense are clubbed
into different clusters, which is useful when there is more
than one fold. To detect a single fold, there have to be two
clusters corresponding to curves from a point on the border
to the center. If the algorithms finds only 1 or more than 2
clusters, it is considered it fails to detect the fold. Example
results of the clustering are shown in Fig. 5-c. For each
cluster found, we then fit a curve θ = p(r), where p(.) is a
polynomial function in the polar coordinates (θ, r). We found
polynomials of degree 1 to work the best for all examples.
Note that in polar coordinates, polynomials of degree 1 are
curves. Examples of the resulting fitted curves are shown in
Fig. 5d.

3) Ordering of (f1, f2) to encode the fold orientation:
Corners affected by the fold, change sign, hence, it is easy
to detect them. In addition, we order the fold coordinates
(f1, f2) such that the folded corners lie between f1 to f2
while traversing in the anti-clockwise sense. That means that
sometimes f2 < f1.

(a) Example #78 on the VR dataset

(b) Example #157 on the VR dataset

Fig. 7: Some examples of the ground truth border and the
reconstructed ones that give the highest errors

TABLE I: Percentage of examples for which a fold is
detected by the clustering algorithm

Dataset min samples fold detection success
MATLAB E/4 94.1%

VR E/2 95.9%

V. EVALUATIONS

We evaluate our method of getting the CloSE representa-
tion on 2 datasets:

1) A dataset we generated on MATLAB using the cloth
simulator presented in [31]

2) The dataset from [26] up to one fold.
Both the datasets contain the start and the end configu-

ration of folding sequences. The MATLAB dataset contains
different shapes (Napkins with varied dimensions, T-shirts
with varied dimensions, pants and a circular towel), while
the dataset from [26], hereon referred to as the VR dataset,
only contains square napkins. The VR dataset is generated by
tracking human actions on the cloth in a virtual environment,
thereby being more realistic and has a less accurate mesh
and more noise. This dataset also contains ≈40% examples
where the cloth is placed at varied location and orientation.

Using the start and the end configuration from these
datasets, we evaluate the success of the method described
in Section IV-B for estimating the CloSE representation,
that is, the one that correctly detects the number of corners
and the location of the folds. As mentioned in the previous
section, to detect the folds we first choose the high value
points from the dGLI Diskdiff depending on a threshold σ.
This threshold is defined as the standard deviation of all
the values in dGLI Diskdiff. We then cluster these points
using the DBSCAN clustering with ϵ = 0.3. We found that
different min sample sizes work well for the two datasets. For
the MATLAB dataset we use min samples as E/4 while for
the VR dataset we use min samples as E/2. As we know that



Fig. 8: Different examples of the CloSE representation and the corresponding automatic generated label.

all our dataset elements have folds, if our methods doesn’t
find any fold we count it as a fail. Table.I shows the success
rate of the fold finding algorithm.

Our CloSE representation has enough information to re-
construct the border of the final state given the first one, by
actually performing the flip of the border mesh at the indi-
cated fold locations of the detected folded corners. Examples
of reconstructed final meshes are shown in Fig. 5-e). We
measure how well the representation works by comparing the
reconstructed border with the real final border, that is taken as
ground truth. We compare the two borders by calculating the
Root Mean Squared Error (RMSE) and the Frechet distance
between the two curves. The results are shown in a histogram
Fig. 6. For fair comparison between different shapes, all
examples are scaled to exactly fit into a unit circle with the
centroid of the border being the center of the circle.

A. Analysis of the evaluation

We see that our naive method works well on most of
the examples, however, it fails to detect the fold in about
5% of the cases. These errors arise because sometimes the
classifier detects only one cluster when in reality 2 exist
or mis-classifies concentrated noise as a 3rd cluster. In the
future we will improve this method to avoid this kind of
error.

Once a fold has been detected, we see in Fig. 6 that the
distance between curves is around 0.1 for most of the cases
(mean = 0.105(rmse)), meaning the representation is accurate
enough to do an almost perfect reconstruction. There are
some cases, however, where the error is higher. These cases
sometimes arise when the cloth is folded close to the border
(Fig. 7a) or because of noise or other features, not yet studied
on the dGLI disk (Fig. 7b). In either of these cases, the
best-fit curve gets pulled away predicting a slightly different
fold. When a cloth side is folded, the fold curve changes



direction twice. When the fold is very small the change
of direction happens very close to the border, which our
defined best-fit-curve fails to accurately capture. Note that
this is not a drawback of the CloSE representation but of
the detection method. Future work will be directed towards
building a better estimator that handles these cases. Having
discussed the worse cases, it is important to point out that our
method works almost flawlessly for most examples. Many
more examples are displayed on our website.

We want to point out that a comparison with any learning
approach to recognize fold states would require a lot of
training data for each one of the possible folds to identify
and for each one of the fold shapes to reach a similar success
rate.

VI. APPLICATIONS

We present two applications that arise naturally from our
CloSE representation: automatic semantic labeling and high-
and low-level planning.

A. Semantic Labeling

Given the CloSE representation of a cloth state

((v1, . . . , vn), (f1, f2)),

where n is the number of corners, by construction each vi
and fi are numbers from [0, 2π), because they are angles
in radians. Note that vi are always in ascending order and
correspond to the corners of the cloth in order following
the border curve. That is, given the border as a sorted list
of vertices, v1 is the coordinate corresponding to the first
corner we find in that list. Some examples of the used order
are shown at the bottom right of Fig. 8.

Therefore, we can identify what is the semantic state of
cloth by using interval reasoning in the circle. Each fold is
an interval and we can identify which of the vi are inside,
and these are the folded corners. In addition, each fi falls
inside an edge of the cloth, that is

vj < fi < vj+1 for any i ∈ 1, 2, j ∈ 1 . . . n,

accounting for the 2π − 0 equivalence. The distances of fi
to the neighbors vi, vi+1 are proportional to the distance of
where the fold is on the folded edge of the corresponding
corner. Therefore, we can also identify where the fold is on
the folded edge.

By simple reasoning we can identify if the cloth is folded
in a symmetric half, if the two folded edges are both folded
by the same proportion, etc. We cannot identify the shape
but we can say how many corners it has. Several examples of
the obtained labels are showed in Fig. 8. Note that we obtain
these without any learning, by just reasoning on our feature
vector, and depending on the desired type of labels we can
give more abstract or more informed labels. You can find the
code to generate the labels in the accompanying website.

(a) Planning case 1

(b) Planning case 2

(c) Multi-step Fold Prediction - Execution of the sequence proposed
above (Planning Case 2) - Initial and Final meshes are displayed
on the sides

Fig. 9: Planning Outputs

B. Planning

In this section, we show how given the initial border of
the cloth, and the CloSE representation of the desired fold
state, we can plan a sequence of manipulations and provide
the semantic instructions and the low-level trajectory of the
corners to manipulate, from the initial position to the end
one.

Since the proposed CloSE representation tracks the folds,
it can reason over its current state and plan the high-level
intermediate states. Fig. 9 shows two representative cases
that we encounter when we are dealing with one fold. In case
1, that is, when both the initial and final configurations are
in the same semantic region, i.e., the fold encloses the same
corner(s), we can directly manipulate the folded corner(s) to
their goal position(s), giving both the semantic instruction
and the initial and goal positions of the corners we instruct
to manipulate, as shown in Fig. 9a.

In case 2, the initial and the goal configurations are in
different semantic states, so we might need to take a multi-
step approach to reach the goal, whose intermediate state in
this case happens to be the unfolded state, as shown in Fig.
9b.

For low-level planning, that is, deciding where to pick
the cloth and where to place it, the CloSE representation
proves useful. In the cases where there are more than 2 folded
corners that require to be moved, we pick 2 corners such that
the area of the trapezoid formed between such corners and
the fold points on the border is maximum. The idea here
is to control the maximum possible area of the cloth. Our
manipulation actions are shown in Fig. 9c. We also run the
trajectories in simulation to prove the provided instructions
can be executed, as can be seen in the video.

VII. CONCLUSION AND FUTURE WORK

In summary, we propose two novel representations for
clothes. First, the dGLI disk representation, which extends
the work [12] and reveals easy-to-detect geometric shapes



that characterize the cloth state, i.e., how it is folded. Then,
we abstract important features from our dGLI representation
–the corner and fold locations– and map them onto a circle.
This circular representation, which we have named CloSE,
is compact and continuous while maintaining the generality
for different shapes offered by the dGLI disk. Finally, we
show two important applications that come naturally from
this representation: Semantic labeling and high- and low-
level fold planning.

The current CloSE representation is restricted to single
folds; however, the dGLI disk is a very powerful repre-
sentation and has already shown interesting prospects for
coping with multiple folds. Thus, in future work, we plan to
extend the functionality of CloSE to handle more complex
folding tasks. We have shown in the evaluation that the naive
methods used for corner and fold detection in the dGLI disk
successfully lead to the desired results through CloSE. Thus,
by improving these naive detection methods, CloSE will be
enhanced to deal with more complex cloth states.

A good cloth representation is one that allows a robot to
reason about cloth states, and plan a sequence of motions
to attain a target cloth configuration. Devising a powerful
representation for clothes is a very important and difficult
problem in robotics and computer graphics. The present work
is aimed at being a step in this direction.
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